meli/src/terminal/cells.rs

2133 lines
68 KiB
Rust

/*
* meli
*
* Copyright 2017-2018 Manos Pitsidianakis
*
* This file is part of meli.
*
* meli is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* meli is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with meli. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
Define a (x, y) point in the terminal display as a holder of a character, foreground/background
colors and attributes.
*/
use super::{position::*, Color};
use crate::state::Context;
use melib::text_processing::wcwidth;
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
use smallvec::SmallVec;
use std::collections::HashMap;
use std::convert::From;
use std::fmt;
use std::ops::{Deref, DerefMut, Index, IndexMut};
/// In a scroll region up and down cursor movements shift the region vertically. The new lines are
/// empty.
///
/// See `CellBuffer::scroll_up` and `CellBuffer::scroll_down` for an explanation of how `xterm`
/// scrolling works.
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct ScrollRegion {
pub top: usize,
pub bottom: usize,
pub left: usize,
pub right: usize,
}
/// An array of `Cell`s that represents a terminal display.
///
/// A `CellBuffer` is a two-dimensional array of `Cell`s, each pair of indices correspond to a
/// single point on the underlying terminal.
///
/// The first index, `Cellbuffer[y]`, corresponds to a row, and thus the y-axis. The second
/// index, `Cellbuffer[y][x]`, corresponds to a column within a row and thus the x-axis.
#[derive(Clone, PartialEq, Eq)]
pub struct CellBuffer {
cols: usize,
rows: usize,
buf: Vec<Cell>,
pub default_cell: Cell,
/// ASCII-only flag.
pub ascii_drawing: bool,
/// If printing to this buffer and we run out of space, expand it.
growable: bool,
tag_table: HashMap<u64, FormatTag>,
tag_associations: SmallVec<[(u64, (usize, usize)); 128]>,
}
impl fmt::Debug for CellBuffer {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"CellBuffer {{ cols: {}, rows: {}, buf: {} cells",
self.cols,
self.rows,
self.buf.len()
)
}
}
impl CellBuffer {
pub const MAX_SIZE: usize = 300_000;
pub fn area(&self) -> Area {
(
(0, 0),
(self.cols.saturating_sub(1), self.rows.saturating_sub(1)),
)
}
pub fn set_cols(&mut self, new_cols: usize) {
self.cols = new_cols;
}
/// Constructs a new `CellBuffer` with the given number of columns and rows, using the given
/// `cell` as a blank.
pub fn new(cols: usize, rows: usize, default_cell: Cell) -> CellBuffer {
CellBuffer {
cols,
rows,
buf: vec![default_cell; cols * rows],
default_cell,
growable: false,
ascii_drawing: false,
tag_table: Default::default(),
tag_associations: SmallVec::new(),
}
}
pub fn new_with_context(
cols: usize,
rows: usize,
default_cell: Option<Cell>,
context: &Context,
) -> CellBuffer {
let default_cell = default_cell.unwrap_or_else(|| {
let mut ret = Cell::default();
let theme_default = crate::conf::value(context, "theme_default");
ret.set_fg(theme_default.fg)
.set_bg(theme_default.bg)
.set_attrs(theme_default.attrs);
ret
});
CellBuffer {
cols,
rows,
buf: vec![default_cell; cols * rows],
default_cell,
growable: false,
ascii_drawing: context.settings.terminal.ascii_drawing,
tag_table: Default::default(),
tag_associations: SmallVec::new(),
}
}
pub fn set_ascii_drawing(&mut self, new_val: bool) {
self.ascii_drawing = new_val;
}
pub fn set_growable(&mut self, new_val: bool) {
self.growable = new_val;
}
/// Resizes `CellBuffer` to the given number of rows and columns, using the given `Cell` as
/// a blank.
#[must_use]
pub fn resize(&mut self, newcols: usize, newrows: usize, blank: Cell) -> bool {
let newlen = newcols * newrows;
if (self.cols, self.rows) == (newcols, newrows) || newlen >= Self::MAX_SIZE {
return !(newlen >= Self::MAX_SIZE);
}
let mut newbuf: Vec<Cell> = Vec::with_capacity(newlen);
for y in 0..newrows {
for x in 0..newcols {
let cell = self.get(x, y).unwrap_or(&blank);
newbuf.push(*cell);
}
}
self.buf = newbuf;
self.cols = newcols;
self.rows = newrows;
true
}
pub fn is_empty(&self) -> bool {
self.buf.is_empty()
}
pub fn empty(&mut self) {
self.buf.clear();
self.cols = 0;
self.rows = 0;
}
/// Clears `self`, using the given `Cell` as a blank.
pub fn clear(&mut self, blank: Cell) {
for cell in self.cellvec_mut().iter_mut() {
*cell = blank;
}
}
pub fn pos_to_index(&self, x: usize, y: usize) -> Option<usize> {
let (cols, rows) = self.size();
if x < cols && y < rows {
Some((cols * y) + x)
} else {
None
}
}
/// Returns a reference to the `Cell` at the given coordinates, or `None` if the index is out of
/// bounds.
///
/// # Examples
///
/// ```no_run
///
/// let mut term = Terminal::new().unwrap();
///
/// let a_cell = term.get(5, 5);
/// ```
pub fn get(&self, x: usize, y: usize) -> Option<&Cell> {
match self.pos_to_index(x, y) {
Some(i) => self.cellvec().get(i),
None => None,
}
}
/// Returns a mutable reference to the `Cell` at the given coordinates, or `None` if the index
/// is out of bounds.
///
/// # Examples
///
/// ```no_run
///
/// let mut term = Terminal::new().unwrap();
///
/// let a_mut_cell = term.get_mut(5, 5);
/// ```
pub fn get_mut(&mut self, x: usize, y: usize) -> Option<&mut Cell> {
match self.pos_to_index(x, y) {
Some(i) => self.cellvec_mut().get_mut(i),
None => None,
}
}
pub fn size(&self) -> (usize, usize) {
(self.cols, self.rows)
}
pub fn cellvec(&self) -> &Vec<Cell> {
&self.buf
}
pub fn cellvec_mut(&mut self) -> &mut Vec<Cell> {
&mut self.buf
}
pub fn cols(&self) -> usize {
self.size().0
}
pub fn rows(&self) -> usize {
self.size().1
}
#[inline(always)]
/// Performs the normal scroll up motion:
///
/// First clear offset number of lines:
///
/// For offset = 1, top = 1:
///
/// ```text
/// | 111111111111 | | |
/// | 222222222222 | | 222222222222 |
/// | 333333333333 | | 333333333333 |
/// | 444444444444 | --> | 444444444444 |
/// | 555555555555 | | 555555555555 |
/// | 666666666666 | | 666666666666 |
/// ```
///
/// In each step, swap the current line with the next by offset:
///
/// ```text
/// | | | 222222222222 |
/// | 222222222222 | | |
/// | 333333333333 | | 333333333333 |
/// | 444444444444 | --> | 444444444444 |
/// | 555555555555 | | 555555555555 |
/// | 666666666666 | | 666666666666 |
/// ```
///
/// Result:
/// ```text
/// Before After
/// | 111111111111 | | 222222222222 |
/// | 222222222222 | | 333333333333 |
/// | 333333333333 | | 444444444444 |
/// | 444444444444 | | 555555555555 |
/// | 555555555555 | | 666666666666 |
/// | 666666666666 | | |
/// ```
///
pub fn scroll_up(&mut self, scroll_region: &ScrollRegion, top: usize, offset: usize) {
//debug!(
// "scroll_up scroll_region {:?}, top: {} offset {}",
// scroll_region, top, offset
//);
let l = scroll_region.left;
let r = if scroll_region.right == 0 {
self.size().0
} else {
scroll_region.right
};
for y in top..top + offset {
for x in l..r {
self[(x, y)] = Cell::default();
}
}
for y in top..=(scroll_region.bottom - offset) {
for x in l..r {
let temp = self[(x, y)];
self[(x, y)] = self[(x, y + offset)];
self[(x, y + offset)] = temp;
}
}
}
#[inline(always)]
/// Performs the normal scroll down motion:
///
/// First clear offset number of lines:
///
/// For offset = 1, top = 1:
///
/// ```text
/// | 111111111111 | | 111111111111 |
/// | 222222222222 | | 222222222222 |
/// | 333333333333 | | 333333333333 |
/// | 444444444444 | --> | 444444444444 |
/// | 555555555555 | | 555555555555 |
/// | 666666666666 | | |
/// ```
///
/// In each step, swap the current line with the prev by offset:
///
/// ```text
/// | 111111111111 | | 111111111111 |
/// | 222222222222 | | 222222222222 |
/// | 333333333333 | | 333333333333 |
/// | 444444444444 | --> | 444444444444 |
/// | 555555555555 | | |
/// | | | 555555555555 |
/// ```
///
/// Result:
/// ```text
/// Before After
/// | 111111111111 | | |
/// | 222222222222 | | 111111111111 |
/// | 333333333333 | | 222222222222 |
/// | 444444444444 | | 333333333333 |
/// | 555555555555 | | 444444444444 |
/// | 666666666666 | | 555555555555 |
/// ```
///
pub fn scroll_down(&mut self, scroll_region: &ScrollRegion, top: usize, offset: usize) {
//debug!(
// "scroll_down scroll_region {:?}, top: {} offset {}",
// scroll_region, top, offset
//);
for y in (scroll_region.bottom - offset + 1)..=scroll_region.bottom {
for x in 0..self.size().0 {
self[(x, y)] = Cell::default();
}
}
for y in ((top + offset)..=scroll_region.bottom).rev() {
for x in 0..self.size().0 {
let temp = self[(x, y)];
self[(x, y)] = self[(x, y - offset)];
self[(x, y - offset)] = temp;
}
}
}
/// See `BoundsIterator` documentation.
pub fn bounds_iter(&self, area: Area) -> BoundsIterator {
BoundsIterator {
rows: std::cmp::min(self.rows.saturating_sub(1), get_y(upper_left!(area)))
..(std::cmp::min(self.rows, get_y(bottom_right!(area)) + 1)),
cols: (
std::cmp::min(self.cols.saturating_sub(1), get_x(upper_left!(area))),
std::cmp::min(self.cols, get_x(bottom_right!(area)) + 1),
),
}
}
/// See `RowIterator` documentation.
pub fn row_iter(&self, bounds: std::ops::Range<usize>, row: usize) -> RowIterator {
if row < self.rows {
RowIterator {
row,
col: std::cmp::min(self.cols.saturating_sub(1), bounds.start)
..(std::cmp::min(self.cols, bounds.end)),
}
} else {
RowIterator { row, col: 0..0 }
}
}
pub fn tag_associations(&self) -> SmallVec<[(usize, u64, bool); 128]> {
let mut ret: SmallVec<[(usize, u64, bool); 128]> = self.tag_associations.iter().fold(
SmallVec::new(),
|mut acc, (tag_hash, (start, end))| {
acc.push((*start, *tag_hash, true));
acc.push((*end, *tag_hash, false));
acc
},
);
ret.sort_by_key(|el| el.0);
ret
}
pub fn tag_table(&self) -> &HashMap<u64, FormatTag> {
&self.tag_table
}
pub fn tag_table_mut(&mut self) -> &mut HashMap<u64, FormatTag> {
&mut self.tag_table
}
pub fn insert_tag(&mut self, tag: FormatTag) -> u64 {
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
let mut hasher = DefaultHasher::new();
tag.hash(&mut hasher);
let hash = hasher.finish();
self.tag_table.insert(hash, tag);
hash
}
pub fn set_tag(&mut self, tag: u64, start: (usize, usize), end: (usize, usize)) {
let start = self
.pos_to_index(start.0, start.1)
.unwrap_or(self.buf.len().saturating_sub(1));
let end = self
.pos_to_index(end.0, end.1)
.unwrap_or(self.buf.len().saturating_sub(1));
if start != end {
self.tag_associations.push((tag, (start, end)));
}
}
}
impl Deref for CellBuffer {
type Target = [Cell];
fn deref(&self) -> &[Cell] {
&self.buf
}
}
impl DerefMut for CellBuffer {
fn deref_mut(&mut self) -> &mut [Cell] {
&mut self.buf
}
}
impl Index<Pos> for CellBuffer {
type Output = Cell;
fn index(&self, index: Pos) -> &Cell {
let (x, y) = index;
self.get(x, y).expect("index out of bounds")
}
}
impl IndexMut<Pos> for CellBuffer {
fn index_mut(&mut self, index: Pos) -> &mut Cell {
let (x, y) = index;
self.get_mut(x, y).expect("index out of bounds")
}
}
impl Default for CellBuffer {
/// Constructs a new `CellBuffer` with a size of `(0, 0)`, using the default `Cell` as a blank.
fn default() -> CellBuffer {
CellBuffer::new(0, 0, Cell::default())
}
}
impl fmt::Display for CellBuffer {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
'_y: for y in 0..self.rows {
for x in 0..self.cols {
let c: &char = &self[(x, y)].ch();
write!(f, "{}", *c).unwrap();
if *c == '\n' {
continue '_y;
}
}
}
Ok(())
}
}
/// A single point on a terminal display.
///
/// A `Cell` contains a character and style.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Cell {
ch: char,
/// Set a `Cell` as empty when a previous cell spans multiple columns and it would
/// "overflow" to this cell.
empty: bool,
fg: Color,
bg: Color,
attrs: Attr,
keep_fg: bool,
keep_bg: bool,
keep_attrs: bool,
}
impl Cell {
/// Creates a new `Cell` with the given `char`, `Color`s and `Attr`.
///
/// # Examples
///
/// ```no_run
/// let cell = Cell::new('x', Color::Default, Color::Green, Attr::DEFAULT);
/// assert_eq!(cell.ch(), 'x');
/// assert_eq!(cell.fg(), Color::Default);
/// assert_eq!(cell.bg(), Color::Green);
/// assert_eq!(cell.attrs(), Attr::DEFAULT);
/// ```
pub fn new(ch: char, fg: Color, bg: Color, attrs: Attr) -> Cell {
Cell {
ch,
fg,
bg,
attrs,
empty: false,
keep_fg: false,
keep_bg: false,
keep_attrs: false,
}
}
/// Creates a new `Cell` with the given `char` and default style.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::with_char('x');
/// assert_eq!(cell.ch(), 'x');
/// assert_eq!(cell.fg(), Color::Default);
/// assert_eq!(cell.bg(), Color::Default);
/// assert_eq!(cell.attrs(), Attr::DEFAULT);
/// ```
pub fn with_char(ch: char) -> Cell {
Cell::new(ch, Color::Default, Color::Default, Attr::DEFAULT)
}
/// Creates a new `Cell` with the given style and a blank `char`.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::with_style(Color::Default, Color::Red, Attr::BOLD);
/// assert_eq!(cell.fg(), Color::Default);
/// assert_eq!(cell.bg(), Color::Red);
/// assert_eq!(cell.attrs(), Attr::BOLD);
/// assert_eq!(cell.ch(), ' ');
/// ```
pub fn with_style(fg: Color, bg: Color, attr: Attr) -> Cell {
Cell::new(' ', fg, bg, attr)
}
/// Returns the `Cell`'s character.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::with_char('x');
/// assert_eq!(cell.ch(), 'x');
/// ```
pub fn ch(&self) -> char {
self.ch
}
/// Sets the `Cell`'s character to the given `char`
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::with_char('x');
/// assert_eq!(cell.ch(), 'x');
///
/// cell.set_ch('y');
/// assert_eq!(cell.ch(), 'y');
/// ```
pub fn set_ch(&mut self, newch: char) -> &mut Cell {
self.ch = newch;
self.keep_fg = false;
self.keep_bg = false;
self.keep_attrs = false;
self
}
/// Returns the `Cell`'s foreground `Color`.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::with_style(Color::Blue, Color::Default, Attr::DEFAULT);
/// assert_eq!(cell.fg(), Color::Blue);
/// ```
pub fn fg(&self) -> Color {
self.fg
}
/// Sets the `Cell`'s foreground `Color` to the given `Color`.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::default();
/// assert_eq!(cell.fg(), Color::Default);
///
/// cell.set_fg(Color::White);
/// assert_eq!(cell.fg(), Color::White);
/// ```
pub fn set_fg(&mut self, newfg: Color) -> &mut Cell {
if !self.keep_fg {
self.fg = newfg;
}
self
}
/// Returns the `Cell`'s background `Color`.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::with_style(Color::Default, Color::Green, Attr::DEFAULT);
/// assert_eq!(cell.bg(), Color::Green);
/// ```
pub fn bg(&self) -> Color {
self.bg
}
/// Sets the `Cell`'s background `Color` to the given `Color`.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::default();
/// assert_eq!(cell.bg(), Color::Default);
///
/// cell.set_bg(Color::Black);
/// assert_eq!(cell.bg(), Color::Black);
/// ```
pub fn set_bg(&mut self, newbg: Color) -> &mut Cell {
if !self.keep_bg {
self.bg = newbg;
}
self
}
pub fn attrs(&self) -> Attr {
self.attrs
}
pub fn set_attrs(&mut self, newattrs: Attr) -> &mut Cell {
if !self.keep_attrs {
self.attrs = newattrs;
}
self
}
/// Set a `Cell` as empty when a previous cell spans multiple columns and it would
/// "overflow" to this cell.
pub fn empty(&self) -> bool {
self.empty
}
pub fn set_empty(&mut self, new_val: bool) -> &mut Cell {
self.empty = new_val;
self
}
/// Sets `keep_fg` field. If true, the foreground color will not be altered if attempted so
/// until the character content of the cell is changed.
pub fn set_keep_fg(&mut self, new_val: bool) -> &mut Cell {
self.keep_fg = new_val;
self
}
/// Sets `keep_bg` field. If true, the background color will not be altered if attempted so
/// until the character content of the cell is changed.
pub fn set_keep_bg(&mut self, new_val: bool) -> &mut Cell {
self.keep_bg = new_val;
self
}
/// Sets `keep_attrs` field. If true, the text attributes will not be altered if attempted so
/// until the character content of the cell is changed.
pub fn set_keep_attrs(&mut self, new_val: bool) -> &mut Cell {
self.keep_attrs = new_val;
self
}
}
impl Default for Cell {
/// Constructs a new `Cell` with a blank `char` and default `Color`s.
///
/// # Examples
///
/// ```no_run
/// let mut cell = Cell::default();
/// assert_eq!(cell.ch(), ' ');
/// assert_eq!(cell.fg(), Color::Default);
/// assert_eq!(cell.bg(), Color::Default);
/// ```
fn default() -> Cell {
Cell::new(' ', Color::Default, Color::Default, Attr::DEFAULT)
}
}
bitflags::bitflags! {
/// The attributes of a `Cell`.
///
/// `Attr` enumerates all combinations of attributes a given style may have.
///
/// `Attr::DEFAULT` represents no attribute.
///
/// # Examples
///
/// ```no_run
/// // Default attribute.
/// let def = Attr::DEFAULT;
///
/// // Base attribute.
/// let base = Attr::BOLD;
///
/// // Combination.
/// let comb = Attr::UNDERLINE | Attr::REVERSE;
/// ```
pub struct Attr: u8 {
/// Terminal default.
const DEFAULT = 0b000_0000;
const BOLD = 0b000_0001;
const DIM = 0b000_0010;
const ITALICS = 0b000_0100;
const UNDERLINE = 0b000_1000;
const BLINK = 0b001_0000;
const REVERSE = 0b010_0000;
const HIDDEN = 0b100_0000;
}
}
impl Default for Attr {
fn default() -> Self {
Attr::DEFAULT
}
}
impl fmt::Display for Attr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Attr::DEFAULT => write!(f, "Default"),
Attr::BOLD => write!(f, "Bold"),
Attr::DIM => write!(f, "Dim"),
Attr::ITALICS => write!(f, "Italics"),
Attr::UNDERLINE => write!(f, "Underline"),
Attr::BLINK => write!(f, "Blink"),
Attr::REVERSE => write!(f, "Reverse"),
Attr::HIDDEN => write!(f, "Hidden"),
combination => {
let mut ctr = 0;
if combination.intersects(Attr::BOLD) {
ctr += 1;
Attr::BOLD.fmt(f)?;
}
if combination.intersects(Attr::DIM) {
if ctr > 0 {
write!(f, "|")?;
}
ctr += 1;
Attr::DIM.fmt(f)?;
}
if combination.intersects(Attr::ITALICS) {
if ctr > 0 {
write!(f, "|")?;
}
ctr += 1;
Attr::ITALICS.fmt(f)?;
}
if combination.intersects(Attr::UNDERLINE) {
if ctr > 0 {
write!(f, "|")?;
}
ctr += 1;
Attr::UNDERLINE.fmt(f)?;
}
if combination.intersects(Attr::BLINK) {
if ctr > 0 {
write!(f, "|")?;
}
ctr += 1;
Attr::BLINK.fmt(f)?;
}
if combination.intersects(Attr::REVERSE) {
if ctr > 0 {
write!(f, "|")?;
}
ctr += 1;
Attr::REVERSE.fmt(f)?;
}
if combination.intersects(Attr::HIDDEN) {
if ctr > 0 {
write!(f, "|")?;
}
Attr::HIDDEN.fmt(f)?;
}
write!(f, "")
}
}
}
}
impl<'de> Deserialize<'de> for Attr {
fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
if let Ok(s) = <String>::deserialize(deserializer) {
Attr::from_string_de::<'de, D, String>(s)
} else {
Err(de::Error::custom("Attributes value must be a string."))
}
}
}
impl Serialize for Attr {
fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(&self.to_string())
}
}
impl Attr {
pub fn from_string_de<'de, D, T: AsRef<str>>(s: T) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
match s.as_ref().trim() {
"Default" => Ok(Attr::DEFAULT),
"Dim" => Ok(Attr::DIM),
"Bold" => Ok(Attr::BOLD),
"Italics" => Ok(Attr::ITALICS),
"Underline" => Ok(Attr::UNDERLINE),
"Blink" => Ok(Attr::BLINK),
"Reverse" => Ok(Attr::REVERSE),
"Hidden" => Ok(Attr::HIDDEN),
combination if combination.contains("|") => {
let mut ret = Attr::DEFAULT;
for c in combination.trim().split("|") {
ret |= Self::from_string_de::<'de, D, &str>(c)?;
}
Ok(ret)
}
_ => Err(de::Error::custom(
r#"Text attribute value must either be a single attribute (eg "Bold") or a combination of attributes separated by "|" (eg "Bold|Underline"). Valid attributes are "Default", "Bold", "Italics", "Underline", "Blink", "Reverse" and "Hidden"."#,
)),
}
}
pub fn write(self, prev: Attr, stdout: &mut crate::StateStdout) -> std::io::Result<()> {
use std::io::Write;
match (self.intersects(Attr::BOLD), prev.intersects(Attr::BOLD)) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[22m"),
(true, false) => write!(stdout, "\x1B[1m"),
}
.and_then(
|_| match (self.intersects(Attr::DIM), prev.intersects(Attr::DIM)) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[22m"),
(true, false) => write!(stdout, "\x1B[2m"),
},
)
.and_then(|_| {
match (
self.intersects(Attr::ITALICS),
prev.intersects(Attr::ITALICS),
) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[23m"),
(true, false) => write!(stdout, "\x1B[3m"),
}
})
.and_then(|_| {
match (
self.intersects(Attr::UNDERLINE),
prev.intersects(Attr::UNDERLINE),
) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[24m"),
(true, false) => write!(stdout, "\x1B[4m"),
}
})
.and_then(
|_| match (self.intersects(Attr::BLINK), prev.intersects(Attr::BLINK)) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[25m"),
(true, false) => write!(stdout, "\x1B[5m"),
},
)
.and_then(|_| {
match (
self.intersects(Attr::REVERSE),
prev.intersects(Attr::REVERSE),
) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[27m"),
(true, false) => write!(stdout, "\x1B[7m"),
}
})
.and_then(|_| {
match (self.intersects(Attr::HIDDEN), prev.intersects(Attr::HIDDEN)) {
(true, true) | (false, false) => Ok(()),
(false, true) => write!(stdout, "\x1B[28m"),
(true, false) => write!(stdout, "\x1B[8m"),
}
})
}
}
pub fn copy_area_with_break(
grid_dest: &mut CellBuffer,
grid_src: &CellBuffer,
dest: Area,
src: Area,
) -> Pos {
if !is_valid_area!(dest) || !is_valid_area!(src) {
debug!(
"BUG: Invalid areas in copy_area:\n src: {:?}\n dest: {:?}",
src, dest
);
return upper_left!(dest);
}
if grid_src.is_empty() || grid_dest.is_empty() {
return upper_left!(dest);
}
let mut ret = bottom_right!(dest);
let mut src_x = get_x(upper_left!(src));
let mut src_y = get_y(upper_left!(src));
'y_: for y in get_y(upper_left!(dest))..=get_y(bottom_right!(dest)) {
'x_: for x in get_x(upper_left!(dest))..=get_x(bottom_right!(dest)) {
if grid_src[(src_x, src_y)].ch() == '\n' {
src_y += 1;
src_x = 0;
if src_y >= get_y(bottom_right!(src)) {
ret.1 = y;
break 'y_;
}
continue 'y_;
}
grid_dest[(x, y)] = grid_src[(src_x, src_y)];
src_x += 1;
if src_x >= get_x(bottom_right!(src)) {
src_y += 1;
src_x = 0;
if src_y >= get_y(bottom_right!(src)) {
//clear_area(grid_dest, ((get_x(upper_left!(dest)), y), bottom_right!(dest)));
ret.1 = y;
break 'y_;
}
break 'x_;
}
}
}
ret
}
/// Copy a source `Area` to a destination.
pub fn copy_area(grid_dest: &mut CellBuffer, grid_src: &CellBuffer, dest: Area, src: Area) -> Pos {
if !is_valid_area!(dest) || !is_valid_area!(src) {
debug!(
"BUG: Invalid areas in copy_area:\n src: {:?}\n dest: {:?}",
src, dest
);
return upper_left!(dest);
}
if grid_src.is_empty() || grid_dest.is_empty() {
return upper_left!(dest);
}
let mut ret = bottom_right!(dest);
let mut src_x = get_x(upper_left!(src));
let mut src_y = get_y(upper_left!(src));
let (cols, rows) = grid_src.size();
if src_x >= cols || src_y >= rows {
debug!("BUG: src area outside of grid_src in copy_area",);
return upper_left!(dest);
}
let tag_associations = grid_src.tag_associations();
let start_idx = grid_src.pos_to_index(src_x, src_y).unwrap();
let mut tag_offset: usize = tag_associations
.binary_search_by(|probe| probe.0.cmp(&start_idx))
.unwrap_or_else(|i| i);
let mut stack: std::collections::BTreeSet<&FormatTag> = std::collections::BTreeSet::default();
for y in get_y(upper_left!(dest))..=get_y(bottom_right!(dest)) {
'for_x: for x in get_x(upper_left!(dest))..=get_x(bottom_right!(dest)) {
let idx = grid_src.pos_to_index(src_x, src_y).unwrap();
while tag_offset < tag_associations.len() && tag_associations[tag_offset].0 <= idx {
if tag_associations[tag_offset].2 {
stack.insert(&grid_src.tag_table()[&tag_associations[tag_offset].1]);
} else {
stack.remove(&grid_src.tag_table()[&tag_associations[tag_offset].1]);
}
tag_offset += 1;
}
grid_dest[(x, y)] = grid_src[(src_x, src_y)];
for t in &stack {
if let Some(fg) = t.fg {
grid_dest[(x, y)].set_fg(fg).set_keep_fg(true);
}
if let Some(bg) = t.bg {
grid_dest[(x, y)].set_bg(bg).set_keep_bg(true);
}
if let Some(attrs) = t.attrs {
grid_dest[(x, y)].attrs |= attrs;
grid_dest[(x, y)].set_keep_attrs(true);
}
}
if src_x >= get_x(bottom_right!(src)) {
break 'for_x;
}
src_x += 1;
}
src_x = get_x(upper_left!(src));
src_y += 1;
if src_y > get_y(bottom_right!(src)) {
for row in
grid_dest.bounds_iter(((get_x(upper_left!(dest)), y + 1), bottom_right!(dest)))
{
for c in row {
grid_dest[c].set_ch(' ');
}
}
ret.1 = y;
break;
}
}
ret
}
/// Change foreground and background colors in an `Area`
pub fn change_colors(grid: &mut CellBuffer, area: Area, fg_color: Color, bg_color: Color) {
if cfg!(feature = "debug-tracing") {
let bounds = grid.size();
let upper_left = upper_left!(area);
let bottom_right = bottom_right!(area);
let (x, y) = upper_left;
if y > (get_y(bottom_right))
|| x > get_x(bottom_right)
|| y >= get_y(bounds)
|| x >= get_x(bounds)
{
debug!("BUG: Invalid area in change_colors:\n area: {:?}", area);
return;
}
if !is_valid_area!(area) {
debug!("BUG: Invalid area in change_colors:\n area: {:?}", area);
return;
}
}
for row in grid.bounds_iter(area) {
for c in row {
grid[c].set_fg(fg_color).set_bg(bg_color);
}
}
}
macro_rules! inspect_bounds {
($grid:ident, $area:ident, $x: ident, $y: ident, $line_break:ident) => {
let bounds = $grid.size();
let (upper_left, bottom_right) = $area;
if $x > (get_x(bottom_right)) || $x >= get_x(bounds) {
if $grid.growable {
if !$grid.resize(
std::cmp::max($x + 1, $grid.cols),
$grid.rows,
$grid.default_cell,
) {
break;
};
} else {
$x = get_x(upper_left);
$y += 1;
if let Some(_x) = $line_break {
$x = _x;
} else {
break;
}
}
}
if $y > (get_y(bottom_right)) || $y >= get_y(bounds) {
if $grid.growable {
if !$grid.resize(
$grid.cols,
std::cmp::max($y + 1, $grid.rows),
$grid.default_cell,
) {
break;
};
} else {
return ($x, $y - 1);
}
}
};
}
/// Write an `&str` to a `CellBuffer` in a specified `Area` with the passed colors.
pub fn write_string_to_grid(
s: &str,
grid: &mut CellBuffer,
fg_color: Color,
bg_color: Color,
attrs: Attr,
area: Area,
// The left-most x coordinate.
line_break: Option<usize>,
) -> Pos {
let mut bounds = grid.size();
let upper_left = upper_left!(area);
let bottom_right = bottom_right!(area);
let (mut x, mut y) = upper_left;
if y == get_y(bounds) || x == get_x(bounds) {
if grid.growable {
if !grid.resize(
std::cmp::max(grid.cols, x + 2),
std::cmp::max(grid.rows, y + 2),
grid.default_cell,
) {
return (x, y);
}
bounds = grid.size();
} else {
return (x, y);
}
}
if y > (get_y(bottom_right))
|| x > get_x(bottom_right)
|| y > get_y(bounds)
|| x > get_x(bounds)
{
if grid.growable {
if !grid.resize(
std::cmp::max(grid.cols, x + 2),
std::cmp::max(grid.rows, y + 2),
grid.default_cell,
) {
return (x, y);
}
} else {
debug!(" Invalid area with string {} and area {:?}", s, area);
return (x, y);
}
}
for c in s.chars() {
inspect_bounds!(grid, area, x, y, line_break);
if c == '\r' {
continue;
}
if c == '\n' {
y += 1;
if let Some(_x) = line_break {
x = _x;
inspect_bounds!(grid, area, x, y, line_break);
continue;
} else {
break;
}
}
if c == '\t' {
grid[(x, y)].set_ch(' ');
x += 1;
inspect_bounds!(grid, area, x, y, line_break);
grid[(x, y)].set_ch(' ');
} else {
grid[(x, y)].set_ch(c);
}
grid[(x, y)]
.set_fg(fg_color)
.set_bg(bg_color)
.set_attrs(attrs);
match wcwidth(u32::from(c)) {
Some(0) | None => {
/* Skip drawing zero width characters */
grid[(x, y)].empty = true;
}
Some(2) => {
/* Grapheme takes more than one column, so the next cell will be
* drawn over. Set it as empty to skip drawing it. */
x += 1;
inspect_bounds!(grid, area, x, y, line_break);
grid[(x, y)] = Cell::default();
grid[(x, y)]
.set_fg(fg_color)
.set_bg(bg_color)
.set_attrs(attrs)
.set_empty(true);
}
_ => {}
}
x += 1;
}
(x, y)
}
/// Completely clear an `Area` with an empty char and the terminal's default colors.
pub fn clear_area(grid: &mut CellBuffer, area: Area, attributes: crate::conf::ThemeAttribute) {
if !is_valid_area!(area) {
return;
}
for row in grid.bounds_iter(area) {
for c in row {
grid[c] = Cell::default();
grid[c]
.set_fg(attributes.fg)
.set_bg(attributes.bg)
.set_attrs(attributes.attrs);
}
}
}
pub mod ansi {
//! Create a `CellBuffer` from a string slice containing ANSI escape codes.
use super::{Attr, Cell, CellBuffer, Color};
/// Create a `CellBuffer` from a string slice containing ANSI escape codes.
pub fn ansi_to_cellbuffer(s: &str) -> Option<CellBuffer> {
let mut bufs: Vec<Vec<Cell>> = Vec::with_capacity(2048);
let mut row: Vec<Cell> = Vec::with_capacity(2048);
enum State {
Start,
Csi,
SetFg,
SetBg,
}
use State::*;
let mut rows = 0;
let mut max_cols = 0;
let mut current_fg = Color::Default;
let mut current_bg = Color::Default;
let mut current_attrs = Attr::DEFAULT;
let mut cur_cell;
let mut state: State;
for l in s.lines() {
cur_cell = Cell::default();
state = State::Start;
let mut chars = l.chars().peekable();
if rows > 0 {
max_cols = std::cmp::max(row.len(), max_cols);
bufs.push(row);
row = Vec::with_capacity(2048);
}
rows += 1;
'line_loop: loop {
let c = chars.next();
if c.is_none() {
break 'line_loop;
}
match (&state, c.unwrap()) {
(Start, '\x1b') => {
if chars.next() != Some('[') {
return None;
}
state = Csi;
}
(Start, c) => {
cur_cell.set_ch(c);
cur_cell.set_fg(current_fg);
cur_cell.set_bg(current_bg);
cur_cell.set_attrs(current_attrs);
row.push(cur_cell);
cur_cell = Cell::default();
}
(Csi, 'm') => {
/* Reset styles */
current_fg = Color::Default;
current_bg = Color::Default;
current_attrs = Attr::DEFAULT;
state = Start;
}
(Csi, '0') if chars.peek() == Some(&'0') => {
current_attrs = Attr::DEFAULT;
chars.next();
let next = chars.next();
if next == Some('m') {
state = Start;
} else if next != Some(';') {
return None;
}
}
(Csi, c @ '0'..='8') if chars.peek() == Some(&'m') => {
chars.next();
state = Start;
match c {
'0' => {
//Reset all attributes
current_fg = Color::Default;
current_bg = Color::Default;
current_attrs = Attr::DEFAULT;
}
'1' => {
current_attrs.set(Attr::BOLD, true);
}
'2' => {
current_attrs.set(Attr::DIM, true);
}
'3' => {
current_attrs.set(Attr::ITALICS, true);
}
'4' => {
current_attrs.set(Attr::UNDERLINE, true);
}
'5' => {
current_attrs.set(Attr::BLINK, true);
}
'7' => {
current_attrs.set(Attr::REVERSE, true);
}
'8' => {
current_attrs.set(Attr::HIDDEN, true);
}
_ => return None,
}
}
(Csi, '0') => {
continue;
}
(Csi, '2') => {
match (chars.next(), chars.next()) {
(Some('2'), Some('m')) => {
current_attrs.set(Attr::BOLD, false);
current_attrs.set(Attr::DIM, false);
}
(Some('3'), Some('m')) => {
current_attrs.set(Attr::ITALICS, false);
}
(Some('4'), Some('m')) => {
current_attrs.set(Attr::UNDERLINE, false);
}
(Some('5'), Some('m')) => {
current_attrs.set(Attr::BLINK, false);
}
(Some('7'), Some('m')) => {
current_attrs.set(Attr::REVERSE, false);
}
(Some('8'), Some('m')) => {
current_attrs.set(Attr::HIDDEN, false);
}
(Some('9'), Some('m')) => { /* Not crossed out */ }
_ => return None,
}
}
(Csi, '3') => {
match chars.next() {
Some('8') => {
/* Set foreground color */
if chars.next() == Some(';') {
state = SetFg;
/* Next arguments are 5;n or 2;r;g;b */
continue;
}
chars.next();
return None;
}
Some('9') => {
current_fg = Color::Default;
/* default foreground color */
let next = chars.next();
if next == Some('m') {
state = Start;
} else if next != Some(';') {
return None;
}
continue;
}
Some(c) if c >= '0' && c < '8' => {
current_fg = Color::from_byte(c as u8 - 0x30);
if chars.next() != Some('m') {
return None;
}
state = Start;
}
_ => return None,
}
}
(Csi, '4') => {
match chars.next() {
Some('8') => {
/* Set background color */
if chars.next() == Some(';') {
state = SetBg;
/* Next arguments are 5;n or 2;r;g;b */
continue;
}
return None;
}
Some('9') => {
/* default background color */
current_bg = Color::Default;
let next = chars.next();
if next == Some('m') {
state = Start;
} else if next != Some(';') {
return None;
}
continue;
}
Some(c) if c >= '0' && c < '8' => {
current_bg = Color::from_byte(c as u8 - 0x30);
if chars.next() != Some('m') {
return None;
}
state = Start;
}
_ => return None,
}
}
(Csi, '9') => {
match chars.next() {
Some('0') => current_fg = Color::Black,
Some('1') => current_fg = Color::Red,
Some('2') => current_fg = Color::Green,
Some('3') => current_fg = Color::Yellow,
Some('4') => current_fg = Color::Blue,
Some('5') => current_fg = Color::Magenta,
Some('6') => current_fg = Color::Cyan,
Some('7') => current_fg = Color::White,
_ => {}
}
let next = chars.next();
if next != Some('m') {
//debug!(next);
}
state = Start;
}
(Csi, '1') if chars.peek() == Some(&'0') => {
chars.next();
match chars.next() {
Some('0') => current_bg = Color::Black,
Some('1') => current_bg = Color::Red,
Some('2') => current_bg = Color::Green,
Some('3') => current_bg = Color::Yellow,
Some('4') => current_bg = Color::Blue,
Some('5') => current_bg = Color::Magenta,
Some('6') => current_bg = Color::Cyan,
Some('7') => current_bg = Color::White,
_ => {}
}
let next = chars.next();
if next != Some('m') {
//debug!(next);
}
state = Start;
}
(SetFg, '5') => {
if chars.next() != Some(';') {
return None;
}
let mut accum = 0;
while chars.peek().is_some() && chars.peek() != Some(&'m') {
let c = chars.next().unwrap();
accum *= 10;
accum += c as u8 - 0x30;
}
if chars.next() != Some('m') {
return None;
}
current_fg = Color::from_byte(accum);
state = Start;
}
(SetFg, '2') => {
if chars.next() != Some(';') {
return None;
}
let mut rgb_color = Color::Rgb(0, 0, 0);
if let Color::Rgb(ref mut r, ref mut g, ref mut b) = rgb_color {
'rgb_fg: for val in &mut [r, g, b] {
let mut accum = 0;
while chars.peek().is_some()
&& chars.peek() != Some(&';')
&& chars.peek() != Some(&'m')
{
let c = chars.next().unwrap();
accum *= 10;
accum += c as u8 - 0x30;
}
**val = accum;
match chars.peek() {
Some(&'m') => {
break 'rgb_fg;
}
Some(&';') => {
chars.next();
}
_ => return None,
}
}
}
if chars.next() != Some('m') {
return None;
}
current_fg = rgb_color;
state = Start;
}
(SetBg, '5') => {
if chars.next() != Some(';') {
return None;
}
let mut accum = 0;
while chars.peek().is_some() && chars.peek() != Some(&'m') {
let c = chars.next().unwrap();
accum *= 10;
accum += c as u8 - 0x30;
}
if chars.next() != Some('m') {
return None;
}
current_bg = Color::from_byte(accum);
state = Start;
}
(SetBg, '2') => {
if chars.next() != Some(';') {
return None;
}
let mut rgb_color = Color::Rgb(0, 0, 0);
if let Color::Rgb(ref mut r, ref mut g, ref mut b) = rgb_color {
'rgb_bg: for val in &mut [r, g, b] {
let mut accum = 0;
while chars.peek().is_some()
&& chars.peek() != Some(&';')
&& chars.peek() != Some(&'m')
{
let c = chars.next().unwrap();
accum *= 10;
accum += c as u8 - 0x30;
}
**val = accum;
match chars.peek() {
Some(&'m') => {
break 'rgb_bg;
}
Some(&';') => {
chars.next();
}
_ => return None,
}
}
}
if chars.next() != Some('m') {
return None;
}
current_bg = rgb_color;
state = Start;
}
_ => unreachable!(),
}
}
}
max_cols = std::cmp::max(row.len(), max_cols);
bufs.push(row);
let mut buf: Vec<Cell> = Vec::with_capacity(max_cols * bufs.len());
for l in bufs {
let row_len = l.len();
buf.extend(l.into_iter());
if row_len < max_cols {
for _ in row_len..max_cols {
buf.push(Cell::default());
}
}
}
if buf.len() != rows * max_cols {
debug!(
"BUG: rows: {} cols: {} = {}, but buf.len() = {}",
rows,
max_cols,
rows * max_cols,
buf.len()
);
}
Some(CellBuffer {
buf,
rows,
cols: max_cols,
default_cell: Cell::default(),
growable: false,
ascii_drawing: false,
tag_table: Default::default(),
tag_associations: smallvec::SmallVec::new(),
})
}
}
/// Use `RowIterator` to iterate the cells of a row without the need to do any bounds checking;
/// the iterator will simply return `None` when it reaches the end of the row.
/// `RowIterator` can be created via the `CellBuffer::row_iter` method and can be returned by
/// `BoundsIterator` which iterates each row.
/// ```no_run
/// for c in grid.row_iter(
/// x..(x + 11),
/// 0,
/// ) {
/// grid[c].set_ch('w');
/// }
/// ```
pub struct RowIterator {
row: usize,
col: std::ops::Range<usize>,
}
/// `BoundsIterator` iterates each row returning a `RowIterator`.
/// ```no_run
/// /* Visit each `Cell` in `area`. */
/// for c in grid.bounds_iter(area) {
/// grid[c].set_ch('w');
/// }
/// ```
pub struct BoundsIterator {
rows: std::ops::Range<usize>,
cols: (usize, usize),
}
impl Iterator for BoundsIterator {
type Item = RowIterator;
fn next(&mut self) -> Option<Self::Item> {
if let Some(next_row) = self.rows.next() {
Some(RowIterator {
row: next_row,
col: self.cols.0..self.cols.1,
})
} else {
None
}
}
}
impl Iterator for RowIterator {
type Item = (usize, usize);
fn next(&mut self) -> Option<Self::Item> {
if let Some(next_col) = self.col.next() {
Some((next_col, self.row))
} else {
None
}
}
}
impl RowIterator {
pub fn forward_col(mut self, new_val: usize) -> Self {
if self.col.start > new_val {
self
} else if self.col.end <= new_val {
self.col.start = self.col.end;
self
} else {
self.col.start = new_val;
self
}
}
}
pub use boundaries::create_box;
pub mod boundaries {
use super::*;
pub(crate) const HORZ_BOUNDARY: char = '─';
pub(crate) const VERT_BOUNDARY: char = '│';
pub(crate) const _TOP_LEFT_CORNER: char = '┌';
pub(crate) const _TOP_RIGHT_CORNER: char = '┐';
pub(crate) const _BOTTOM_LEFT_CORNER: char = '└';
pub(crate) const _BOTTOM_RIGHT_CORNER: char = '┘';
pub(crate) const LIGHT_VERTICAL_AND_RIGHT: char = '├';
pub(crate) const _LIGHT_VERTICAL_AND_LEFT: char = '┤';
pub(crate) const _LIGHT_DOWN_AND_HORIZONTAL: char = '┬';
pub(crate) const _LIGHT_UP_AND_HORIZONTAL: char = '┴';
pub(crate) const _DOUBLE_DOWN_AND_RIGHT: char = '╔';
pub(crate) const _DOUBLE_DOWN_AND_LEFT: char = '╗';
pub(crate) const _DOUBLE_UP_AND_LEFT: char = '╝';
pub(crate) const _DOUBLE_UP_AND_RIGHT: char = '╚';
fn bin_to_ch(b: u32) -> char {
match b {
0b0001 => '╶',
0b0010 => '╵',
0b0011 => '└',
0b0100 => '╴',
0b0101 => '─',
0b0110 => '┘',
0b0111 => '┴',
0b1000 => '╷',
0b1001 => '┌',
0b1010 => '│',
0b1011 => '├',
0b1100 => '┐',
0b1101 => '┬',
0b1110 => '┤',
0b1111 => '┼',
_ => unsafe { std::hint::unreachable_unchecked() },
}
}
fn ch_to_bin(ch: char) -> Option<u32> {
match ch {
'└' => Some(0b0011),
'─' => Some(0b0101),
'┘' => Some(0b0110),
'┴' => Some(0b0111),
'┌' => Some(0b1001),
'│' => Some(0b1010),
'├' => Some(0b1011),
'┐' => Some(0b1100),
'┬' => Some(0b1101),
'┤' => Some(0b1110),
'┼' => Some(0b1111),
'╷' => Some(0b1000),
'╵' => Some(0b0010),
'╴' => Some(0b0100),
'╶' => Some(0b0001),
_ => None,
}
}
#[allow(clippy::never_loop)]
fn set_and_join_vert(grid: &mut CellBuffer, idx: Pos) -> u32 {
let (x, y) = idx;
let mut bin_set = 0b1010;
/* Check left side
*
* 1
* -> 2 │ 0
* 3
*/
loop {
if x > 0 {
if let Some(cell) = grid.get_mut(x - 1, y) {
if let Some(adj) = ch_to_bin(cell.ch()) {
if (adj & 0b0001) > 0 {
bin_set |= 0b0100;
break;
} else if adj == 0b0100 {
cell.set_ch(bin_to_ch(0b0101));
cell.set_fg(Color::Byte(240));
bin_set |= 0b0100;
break;
}
}
}
}
bin_set &= 0b1011;
break;
}
/* Check right side
*
* 1
* 2 │ 0 <-
* 3
*/
loop {
if let Some(cell) = grid.get_mut(x + 1, y) {
if let Some(adj) = ch_to_bin(cell.ch()) {
if (adj & 0b0100) > 0 {
bin_set |= 0b0001;
break;
}
}
}
bin_set &= 0b1110;
break;
}
/* Set upper side
*
* 1 <-
* 2 │ 0
* 3
*/
loop {
if y > 0 {
if let Some(cell) = grid.get_mut(x, y - 1) {
if let Some(adj) = ch_to_bin(cell.ch()) {
cell.set_ch(bin_to_ch(adj | 0b1000));
cell.set_fg(Color::Byte(240));
} else {
bin_set &= 0b1101;
}
}
}
break;
}
/* Set bottom side
*
* 1
* 2 │ 0
* 3 <-
*/
loop {
if let Some(cell) = grid.get_mut(x, y + 1) {
if let Some(adj) = ch_to_bin(cell.ch()) {
cell.set_ch(bin_to_ch(adj | 0b0010));
cell.set_fg(Color::Byte(240));
} else {
bin_set &= 0b0111;
}
}
break;
}
if bin_set == 0 {
bin_set = 0b1010;
}
bin_set
}
#[allow(clippy::never_loop)]
fn set_and_join_horz(grid: &mut CellBuffer, idx: Pos) -> u32 {
let (x, y) = idx;
let mut bin_set = 0b0101;
/* Check upper side
*
* 1 <-
* 2 ─ 0
* 3
*/
loop {
if y > 0 {
if let Some(cell) = grid.get_mut(x, y - 1) {
if let Some(adj) = ch_to_bin(cell.ch()) {
if (adj & 0b1000) > 0 {
bin_set |= 0b0010;
break;
} else if adj == 0b0010 {
bin_set |= 0b0010;
cell.set_ch(bin_to_ch(0b1010));
cell.set_fg(Color::Byte(240));
break;
}
}
}
}
bin_set &= 0b1101;
break;
}
/* Check bottom side
*
* 1
* 2 ─ 0
* 3 <-
*/
loop {
if let Some(cell) = grid.get_mut(x, y + 1) {
if let Some(adj) = ch_to_bin(cell.ch()) {
if (adj & 0b0010) > 0 {
bin_set |= 0b1000;
break;
} else if adj == 0b1000 {
bin_set |= 0b1000;
cell.set_ch(bin_to_ch(0b1010));
cell.set_fg(Color::Byte(240));
break;
}
}
}
bin_set &= 0b0111;
break;
}
/* Set left side
*
* 1
* -> 2 ─ 0
* 3
*/
loop {
if x > 0 {
if let Some(cell) = grid.get_mut(x - 1, y) {
if let Some(adj) = ch_to_bin(cell.ch()) {
cell.set_ch(bin_to_ch(adj | 0b0001));
cell.set_fg(Color::Byte(240));
} else {
bin_set &= 0b1011;
}
}
}
break;
}
/* Set right side
*
* 1
* 2 ─ 0 <-
* 3
*/
loop {
if let Some(cell) = grid.get_mut(x + 1, y) {
if let Some(adj) = ch_to_bin(cell.ch()) {
cell.set_ch(bin_to_ch(adj | 0b0100));
cell.set_fg(Color::Byte(240));
} else {
bin_set &= 0b1110;
}
}
break;
}
if bin_set == 0 {
bin_set = 0b0101;
}
bin_set
}
pub(crate) enum BoxBoundary {
Horizontal,
Vertical,
}
pub(crate) fn set_and_join_box(grid: &mut CellBuffer, idx: Pos, ch: BoxBoundary) {
/* Connected sides:
*
* 1
* 2 c 0
* 3
*
* #3210
* 0b____
*/
if grid.ascii_drawing {
grid[idx].set_ch(match ch {
BoxBoundary::Vertical => '|',
BoxBoundary::Horizontal => '-',
});
grid[idx].set_fg(Color::Byte(240));
return;
}
let bin_set = match ch {
BoxBoundary::Vertical => set_and_join_vert(grid, idx),
BoxBoundary::Horizontal => set_and_join_horz(grid, idx),
};
grid[idx].set_ch(bin_to_ch(bin_set));
grid[idx].set_fg(Color::Byte(240));
}
/// Puts boundaries in `area`.
/// Returns the inner area of the created box.
pub fn create_box(grid: &mut CellBuffer, area: Area) -> Area {
if !is_valid_area!(area) {
return ((0, 0), (0, 0));
}
let upper_left = upper_left!(area);
let bottom_right = bottom_right!(area);
if !grid.ascii_drawing {
for x in get_x(upper_left)..get_x(bottom_right) {
grid[(x, get_y(upper_left))]
.set_ch(HORZ_BOUNDARY)
.set_fg(Color::Byte(240));
grid[(x, get_y(bottom_right))]
.set_ch(HORZ_BOUNDARY)
.set_fg(Color::Byte(240));
}
for y in get_y(upper_left)..get_y(bottom_right) {
grid[(get_x(upper_left), y)]
.set_ch(VERT_BOUNDARY)
.set_fg(Color::Byte(240));
grid[(get_x(bottom_right), y)]
.set_ch(VERT_BOUNDARY)
.set_fg(Color::Byte(240));
}
set_and_join_box(grid, upper_left, BoxBoundary::Horizontal);
set_and_join_box(
grid,
set_x(upper_left, get_x(bottom_right)),
BoxBoundary::Horizontal,
);
set_and_join_box(
grid,
set_y(upper_left, get_y(bottom_right)),
BoxBoundary::Vertical,
);
set_and_join_box(grid, bottom_right, BoxBoundary::Vertical);
}
(
(
std::cmp::min(
get_x(upper_left) + 2,
std::cmp::min(get_x(upper_left) + 1, get_x(bottom_right)),
),
std::cmp::min(
get_y(upper_left) + 2,
std::cmp::min(get_y(upper_left) + 1, get_y(bottom_right)),
),
),
(
std::cmp::max(
get_x(bottom_right).saturating_sub(2),
std::cmp::max(get_x(bottom_right).saturating_sub(1), get_x(upper_left)),
),
std::cmp::max(
get_y(bottom_right).saturating_sub(2),
std::cmp::max(get_y(bottom_right).saturating_sub(1), get_y(upper_left)),
),
),
)
}
}
use melib::text_processing::search::KMP;
impl KMP for CellBuffer {
fn kmp_search(&self, pattern: &str) -> smallvec::SmallVec<[usize; 256]> {
let (mut w, prev_ind) =
pattern
.char_indices()
.skip(1)
.fold((vec![], 0), |(mut acc, prev_ind), (i, _)| {
acc.push(&pattern[prev_ind..i]);
(acc, i)
});
w.push(&pattern[prev_ind..]);
let t = Self::kmp_table(&w);
let mut j = 0; // (the position of the current character in text)
let mut k = 0; // (the position of the current character in pattern)
let mut ret = smallvec::SmallVec::new();
while j < self.buf.len() && k < w.len() as i32 {
if self.buf[j].ch() == '\n' {
j += 1;
continue;
}
if w[k as usize] == self.buf[j].ch().encode_utf8(&mut [0; 4]) {
j += 1;
k += 1;
if k as usize == w.len() {
ret.push(j - (k as usize));
k = t[k as usize];
}
} else {
k = t[k as usize];
if k < 0 {
j += 1;
k += 1;
}
}
}
ret
}
}
#[test]
fn test_cellbuffer_search() {
use melib::text_processing::{Reflow, TextProcessing, _ALICE_CHAPTER_1};
let lines: Vec<String> = _ALICE_CHAPTER_1.split_lines_reflow(Reflow::All, Some(78));
let mut buf = CellBuffer::new(
lines.iter().map(String::len).max().unwrap(),
lines.len(),
Cell::with_char(' '),
);
let width = buf.size().0;
for (i, l) in lines.iter().enumerate() {
write_string_to_grid(
l,
&mut buf,
Color::Default,
Color::Default,
Attr::DEFAULT,
((0, i), (width.saturating_sub(1), i)),
None,
);
}
for ind in buf.kmp_search("Alice") {
for c in &buf.cellvec()[ind..std::cmp::min(buf.cellvec().len(), ind + 25)] {
print!("{}", c.ch());
}
println!();
}
}
#[derive(Debug, Default, Copy, Hash, Clone, PartialEq, Eq)]
pub struct FormatTag {
pub fg: Option<Color>,
pub bg: Option<Color>,
pub attrs: Option<Attr>,
pub priority: u8,
}
impl core::cmp::Ord for FormatTag {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.priority.cmp(&other.priority)
}
}
impl core::cmp::PartialOrd for FormatTag {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(&other))
}
}
#[derive(Debug, Copy, Hash, Clone, PartialEq, Eq)]
pub enum WidgetWidth {
Unset,
Hold(usize),
Set(usize),
}